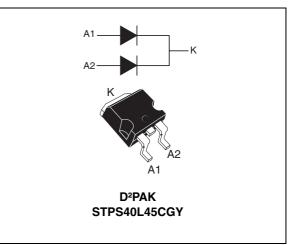


STPS40L45C-Y

Automotive power Schottky rectifier

Datasheet – production data


Features

- Low forward voltage drop meaning very small conduction losses
- Low switching losses allowing high frequency operation
- Avalanche capability specified
- AEC-Q101 qualified

Description

Dual center tap Schottky barrier rectifier designed for high frequency switched mode power supplies and DC to DC converters.

Packaged in D²PAK, this device is intended for use in low voltage, high frequency inverters, freewheeling and polarity protection for automotive applications.

Table 1.Device summary

Symbol	Value
I _{F(AV)}	2 x 20 A
V _{RRM}	45 V
T _j (max)	150 °C
V _F (max)	0.49 V

1/7

This is information on a product in full production.

1 Characteristics

Symbol	Parameter			Value	Unit
V _{RRM}	Repetitive peak reverse voltage			45	V
I _{F(RMS)}	Forward rms current			30	А
I _{F(AV)}	Average forward current	$\begin{array}{c c} T_c = 130 \ ^\circ C \\ \delta = 0.5 \end{array} \begin{array}{c} \text{per diode} \\ \text{per device} \end{array}$		20 40	A
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms sir	nusoidal	230	А
I _{RRM}	Repetitive peak reverse current	t _p = 2 μs squa	are F = 1 kHz	2	А
I _{RSM}	Non repetitive peak reverse current	3	А		
P _{ARM}	Repetitive peak avalanche power	8100	W		
T _{stg}	Storage temperature range			-65 to + 150	°C
Тj	Operating junction temperature ⁽¹⁾			-40 to + 150	°C
dV/dt	Critical rate of rise of reverse voltage			10000	V/µs
dPtot _ 1 _ condition to avoid thermal rungway for a diade on its own heateink					

Table 2. Absolute ratings (limiting values, per diode)

1. $\frac{dPtot}{dT_j} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

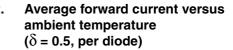
Table 3.Thermal resistances

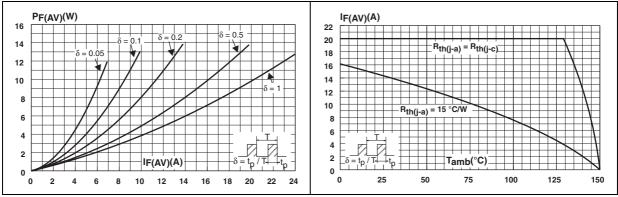
Symbol	Parameter	Value	Unit	
R _{th (j-c)}	Junction to case		1.5 0.8	°C/W
R _{th(c)}	Coupling	0.1	°C/W	

When the diodes 1 and 2 are used simultaneously :

 ΔT_{i} (diode 1) = P(diode1) x R_{th(i-c)}(Per diode) + P(diode 2) x R_{th(c)}.

 Table 4.
 Static electrical characteristics (per diode)


Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
IR ⁽¹⁾ Reverse leakage current	Reverse leakage	T _j = 25 °C	V _ V			0.6	mA
	T _j = 125 °C	$V_{R} = V_{RRM}$		140	280	mA	
V _F ⁽¹⁾ Forward voltage drop	T _j = 25 °C	I _F = 20 A			0.53		
	Forward voltage drop	T _j = 125 °C	I _F = 20 A		0.42	0.49	V
	Forward voltage drop	T _j = 25 °C	I _F = 40 A			0.69	v
		T _j = 125 °C	I _F = 40 A		0.6	0.7	


1. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses use the following equation: P = 0.28 x $I_{F(AV)}$ + 0.0105 ${I_F}^2_{(RMS)}$

Figure 1. Average forward power dissipation Figure 2. versus average forward current (per diode)

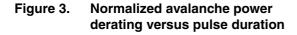
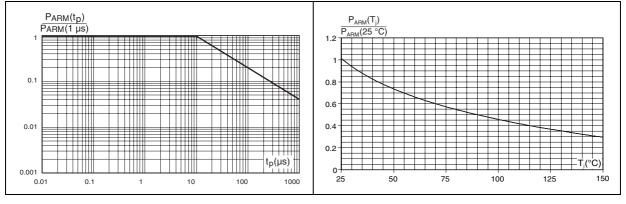
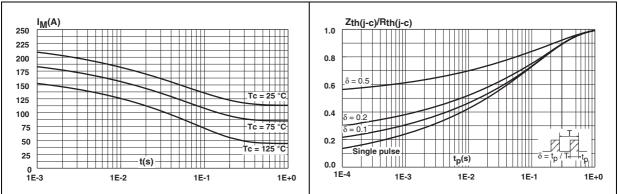


Figure 4. Normalized avalanche power derating versus junction temperature

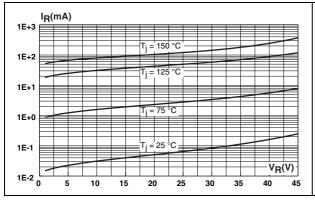

Figure 5. Non repetitive surge peak forward current versus overload duration (maximum values, per diode)

Figure 6. Relative variation of thermal impedance junction to case versus pulse duration

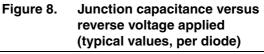


Figure 7. Reverse leakage current versus reverse voltage applied (typical values, per diode)

Figure 9. Forward voltage drop versus forward current (maximum values, per diode)

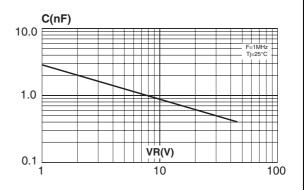
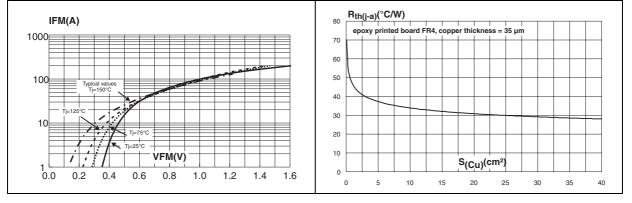
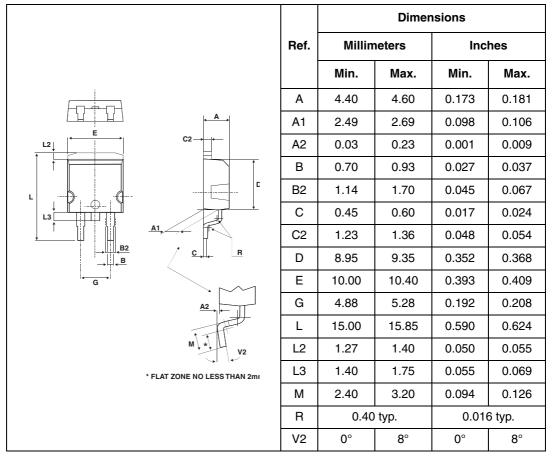
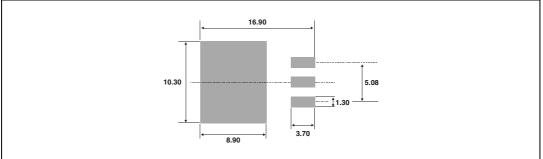



Figure 10. Thermal resistance junction to ambient versus copper surface under tab.



2 Package information


- Epoxy meets UL94, V0
- Cooling method: by conduction (C)

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 5. D²PAK dimensions

Figure 11. Footprint (dimensions in mm)

3 Ordering information

Table 6.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS40L45CGY-TR	STPS40L45CGY	D ² PAK	1.8 g	500	Tape and Reel

4 Revision history

Table 7.Document revision history

Date	Revision	Changes
25-Jun-2012	1	First issue.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 023224 Rev 1